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Introduction

Inference of genetic interactions is challenging. While it is feasible to experimentally per-
form most pairwise knockouts in simple organisms [1], doing so with the approximately
20,000 genes present in humans would require almost 200 million experiments. Leveraging
the combinatorial nature of siRNA knockdowns, we are able to infer pairwise interactions
on a large scale using existing statistical tools. We evaluated the performance of two recent
tools for interaction detection, xyz [3] and GLINTERNET [2], on simulated siRNA screens of
100 genes. Scalability was also tested on simulated sets of up to 4000 genes.

Materials and Methods

We simulate an siRNA–gene perturbation matrix X , choose main effects and interactions,
and sample a fitness vector Y . Noise is added to both X and Y to match specific signal-to-
noise ratios.
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∑
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∑
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We run both xyz and GLINTERNET on the simulated data sets to find interaction coeffi-
cients βi,j. Results are filtered in all cases with the chi-squared test, and we reject values that
are not significant at the level of α = 0.05.

Results

xyz

Given a small data set, xyz is able to identify ≈ 10-25% of the interactions, while returning
50-75% false positives. Strong interactions, and those that occur frequently, are significantly
more likely to be correctly identified.
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As the size of the data sets and number of effects increase, the vast majority of results become
false positives. Strong negative effects are no longer found.

GLINTERNET

On the same data sets, GLINTERNET significantly outperforms xyz. 50-75% of the results
are correctly identified interactions. Again, both strong interactions and those that occur
frequently are significantly more likely to be correctly identified.
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When lethal interactions were present the majority of identified effects are not only true
interactions, but also lethal.

Conclusions

• Using both xyz and GLINTERNET, pairs of genes with a stronger effect or observed more
often in the data are significantly more likely to be found.

• xyz performs poorly on large data sets, where a large number of main effects and inter-
actions are present.

• GLINTERNET finds strong interactions, even in large data sets, with few false positives.
This makes it a strong candidate for finding synthetic lethal pairs.

Forthcoming Research

Work is ongoing to produce a lasso implementation that is specifically designed for finding
strong interactions on large perturbation screens, using multi-core machines. To improve
the detection of lethal pairs (where each gene may not have a significant effect on its own)
we are using lasso regression, rather than group-lasso regression.
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